Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Clin Med ; 10(5)2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1125903

ABSTRACT

Tobacco smoking has emerged as a risk factor for increasing the susceptibility to infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via increased expression of angiotensin-converting enzyme-2 (ACE2) in the lung, linked to coronavirus disease 2019 (COVID-19) development. Given the modifiable nature of electronic cigarettes and the delivery of high concentrations of nicotine, we investigate whether electronic cigarette vaping has the potential to increase susceptibility to SARS-CoV-2 infection. We exposed BEAS-2B cells (bronchial epithelium transformed with Ad12-SV40 2B) and primary small airway epithelial cells (SAECs) to electronic cigarette aerosol condensates produced from propylene glycol/vegetable glycerin or commercially bought e-liquid (±added nicotine) and cigarette smoke extract to investigate if electronic cigarette exposure, like cigarette smoke, increases the expression of ACE2 in lung epithelial cells. In BEAS-2B cells, cytotoxicity (CCK-8), membrane integrity (LDH), and ACE2 protein expression (immunofluorescence) were measured for both 4- and 24 h treatments in BEAS-2B cells and 4 h in SAECs; ACE2 gene expression was measured using quantitative polymerase chain reaction (qPCR) for 4 h treatment in BEAS-2B cells. Nicotine-free condensates and higher concentrations of nicotine-containing condensates were cytotoxic to BEAS-2B cells. Higher LDH release and reduced membrane integrity were seen in BEAS-2B cells treated for 24 h with higher concentrations of nicotine-containing condensates. ACE2 protein expression was observably increased in all treatments compared to cell controls, particularly for 24 h exposures. ACE2 gene expression was significantly increased in cells exposed to the locally bought e-liquid condensate with high nicotine concentration and cigarette smoke extract compared with cell controls. Our study suggests that vaping alone and smoking alone can result in an increase in lung ACE2 expression. Vaping and smoking are avoidable risk factors for COVID-19, which, if avoided, could help reduce the number of COVID-19 cases and the severity of the disease. This is the first study to utilize electronic cigarette aerosol condensates, novel and developed in our laboratory, for investigating ACE2 expression in human airway epithelial cells.

2.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L158-L163, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-919085

ABSTRACT

Lungs of smokers and chronic obstructive pulmonary disease (COPD) are severely compromised and are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attack. The dangerous combination of enhanced SARS-CoV-2 attachment receptor protein ACE2 along with an increase in endocytic vacuoles will enable viral attachment, entry, and replication. The objective of the study was to identify the presence of SARS-CoV-2 host attachment receptor angiotensin-converting enzyme-2 (ACE2) along with endocytic vacuoles, early endosome antigen-1 (EEA1), late endosome marker RAB7, cathepsin-L, and lysosomal associated membrane protein-1 (LAMP-1) as lysosome markers in the airways of smokers and COPD patients. The study design was cross-sectional and involved lung resections from 39 patients in total, which included 19 patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I or GOLD stage II COPD, of which 9 were current smokers with COPD (COPD-CS) and 10 were ex-smokers with COPD (COPD-ES), 10 were normal lung function smokers, and 10 were never-smoking normal controls. Immunostaining for ACE2, EEA1, RAB7, and cathepsin-L was done. A comparative description for ACE2, EEA1, RAB7, and cathepsin-L expression pattern is provided for the patient groups. Furthermore, staining intensity for LAMP-1 lysosomes was measured as the ratio of the LAMP-1-stained areas per total area of epithelium or subepithelium, using Image ProPlus v7.0 software. LAMP-1 expression showed a positive correlation to patient smoking history while in COPD LAMP-1 negatively correlated to lung function. The active presence of ACE2 protein along with endocytic vacuoles such as early/late endosomes and lysosomes in the small airways of smokers and COPD patients provides evidence that these patient groups could be more susceptible to COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/pathology , Transport Vesicles/metabolism , Cathepsin L/metabolism , Cross-Sectional Studies , Disease Susceptibility , Humans , Lung/pathology , Lysosome-Associated Membrane Glycoproteins/metabolism , SARS-CoV-2 , Smokers , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
3.
Expert Rev Respir Med ; 15(2): 197-212, 2021 02.
Article in English | MEDLINE | ID: covidwho-759841

ABSTRACT

INTRODUCTION: COVID-19 is a recent emerging pandemic whose prognosis is still unclear. Diagnostic tools are the main players that not only indicate a possible infection but can further restrict the transmission and can determine the extent to which disease progression would occur. AREAS COVERED: In this paper, we have performed a narrative and critical review on different technology-based diagnostic strategies such as molecular approaches including real-time reverse transcriptase PCR, serological testing through enzyme-linked immunosorbent assay, laboratory and point of care devices, radiology-based detection through computed tomography and chest X-ray, and viral cell cultures on Vero E6 cell lines are discussed in detail to address COVID-19. This review further provides an overview of emergency use authorized immunodiagnostic and molecular diagnostic kits and POC devices by FDA for timely and efficient conduction of diagnostic tests. The majority of the literature cited in this paper is collected from guidelines on protocols and other considerations on diagnostic strategies of COVID-19 issued by WHO, CDC, and FDA under emergency authorization. EXPERT OPINION: Such information holds importance to the health professionals in conducting error-free diagnostic tests and researches in producing better clinical strategies by addressing the limitations associated with the available methods.


Subject(s)
COVID-19/diagnosis , Algorithms , Animals , Antibodies, Viral/blood , COVID-19 Testing , Chlorocebus aethiops , Colorimetry , Cytopathogenic Effect, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Luminescent Measurements , Lung/diagnostic imaging , Lung/pathology , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Testing , Quarantine/psychology , Radiography , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Tomography, X-Ray Computed , Vero Cells , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL